麻豆淫院


MTU Paper Among 'Most Accessed' in Advanced Materials

Hu Paper Among 'Most Accessed' in Advanced Materials

(麻豆淫院Org.com) -- A paper by Michigan Tech faculty member Yun Hang Hu has been ranked among the most accessed articles in the prestigious journal Advanced Materials (impact factor 8.191) for the month of March. The article, "Hydrogen Storage in Metal-Organic Framework," provides an overview of the latest research in this growing field.

Scientists all over the world are trying to develop good ways to store hydrogen for energy, with limited success. 鈥 is very difficult,鈥 says Hu, an associate professor of materials science and engineering. 鈥淵ou can鈥檛 use it in its liquid or solid forms, and as a gas, it鈥檚 very light and takes up a lot of space. But if you can find a material that can adsorb it well, it can be stored in a small space.鈥

Metal-organic frameworks may someday provide that storage space. These powdered materials are made of and a variety of metals, from aluminum to zinc. They have a very high surface area, with lots of nooks and crannies to glom onto and hold them in place. can be forced into the frameworks by applying pressure and then released by lowering that pressure.

The problem is that most metal-organic frameworks only work at temperatures you might find on the dark side of the moon, about minus 198 degrees Celsius.

In the paper, Hu and his coauthor, PhD student Lei Zhang, reviewed more than 100 publications, organizing and summarizing their findings. They focused on the hydrogen-storage capacity of various metal-organic frameworks, how hydrogen and the frameworks interact with one another, and challenges, including developing a metal-organic framework that works at room temperature.

鈥淵un and his students are doing pioneering, innovative research in hydrogen storage,鈥 said Mark Plichta, chair of materials science and engineering. 鈥淚n addition, he has an excellent grasp of the work being done in that area, so it鈥檚 no surprise that he would author a review paper that is very useful to other researchers.鈥

The National Science Foundation funded their work through a $302,650 grant, made available through the American Recovery and Reinvestment Act, also known as federal stimulus money. The grant is also supporting additional research by Hu鈥檚 team; Hu and Zhang have recently published two other papers on metal-organic frameworks: 鈥淎morphization of Metal-Organic Framework MOF-5 at Unusually Low Applied Pressure鈥 in 麻豆淫院ical Review B and 鈥淎 Systematic Investigation of Decomposition of Nano Zn4O(C8H4O4)3 Metal-Organic Framework鈥 in the Journal of 麻豆淫院ical Chemistry C.

More information: Paper:

Citation: MTU Paper Among 'Most Accessed' in Advanced Materials (2010, May 11) retrieved 28 April 2025 from /news/2010-05-mtu-paper-accessed-advanced-materials.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Layered graphene sheets could solve hydrogen storage issues

0 shares

Feedback to editors