Âé¶¹ÒùÔº

June 1, 2018

Novel insulators with conducting edges

Schematic of a higher-order topological insulator in the shape of a nanowire, with conducting channels on its edges. Credit: UZH
× close
Schematic of a higher-order topological insulator in the shape of a nanowire, with conducting channels on its edges. Credit: UZH

Âé¶¹ÒùÔºicists at the University of Zurich are researching a new class of materials: Higher-order topological insulators. The edges of these crystalline solids conduct electric current without dissipation, while the rest of the crystal remains insulating. This could be useful for applications in semiconductor technology and for building quantum computers.

Topology examines the properties of objects and solids that are protected against perturbations and deformations. Materials known so far include topological insulators, which are crystals that insulate on the inside but conduct electrical current on their surface. The conducting surfaces are topologically protected, which means that they cannot easily be brought into an insulating state.

Theoretical physicists at the University of Zurich have now predicted a new class of topological insulators with conducting properties on the edges of crystals rather than on the surface. The research team, made up of scientists from UZH, Princeton University, the Donostia International Âé¶¹ÒùÔºics Center and the Max Planck Institute of Microstructure Âé¶¹ÒùÔºics in Halle, dubbed the new material class "higher-order topological insulators." The extraordinary robustness of the conducting edges makes them particularly interesting: The current of topological electrons cannot be stopped by disorder or impurities. If an imperfection gets in the way of the current, it simply flows around the impurity.

In addition, the crystal edges do not have to be specially prepared to conduct electrical current. If the crystal breaks, the new edges automatically also conduct current. "The most exciting aspect is that electricity can at least in theory be conducted without any dissipation," says Titus Neupert, professor at the Department of Âé¶¹ÒùÔºics at UZH. "You could think of the crystal edges as a kind of highway for electrons. They can't simply make a U-turn." This property of dissipationless conductance, otherwise known from superconductors at low temperatures, is not shared with the previously known topological insulator crystals that have conducting surfaces, but is specific to the higher-order topological crystals.

The physicists' study still mostly relies on theoretical aspects. They have proposed tin telluride as the first compound to show these novel properties. "More material candidates have to be identified and probed in experiments," says Neupert. The researchers hope that in the future nanowires made of higher-order topological insulators may be used as conducting paths in electric circuits. They could be combined with magnetic and superconducting materials and used for building quantum computers.

Get free science updates with Science X Daily and Weekly Newsletters — to customize your preferences!

More information: Frank Schindler, Ashley M. Cook, Maia G. Vergniory, Zhijun Wang, Stuart S. P. Parkin, B. Andrei Bernevig, Titus Neupert. Higher-order topological insulators. Science Advances, June 1st, 2018. ,

Journal information: Science Advances

Provided by University of Zurich

Load comments (0)

This article has been reviewed according to Science X's and . have highlighted the following attributes while ensuring the content's credibility:

Get Instant Summarized Text (GIST)

This summary was automatically generated using LLM.