November 22, 2010 feature
Damaging graphene to create a band gap
(麻豆淫院Org.com) -- "Graphene offers a lot of interesting potential applications for nanoelectronics," Florian Banhart tells 麻豆淫院Org.com, "but there is no band gap. This is a well-known problem. Without the band gap, switching as needed in electronic devices is difficult."
Banhart, a scientist at the University of Strasbourg in Strasbourg, France, believes that there is a solution to this problem. 鈥淓veryone tries to solve this problem, trying to create different properties in order to create a band gap. Our solution is doping with metal atoms attached to reconstructed defects in the graphene.鈥
Working with Ovidiu Cretu and Julio Rodr铆guez-Manzo at the University of Stasbourg, and with Arkady Krasheninnikov at the University of Helsinki, Risto Nieminen at Aalto University in Finland and Litao Sun at Southeast University in Nanjing, China, Banhart developed a method to modify the properties of graphene. The group鈥檚 work is published in 麻豆淫院ical Review Letters: 鈥淢igration and Localization of Metal Atoms on Strained Graphene.鈥
鈥淭he idea is to be able to attach something to the surface of the graphene, changing some of the properties to get a band gap,鈥 Banhart explains. By creating reconstructed defects, we can enhance the activity of the graphene and attach metal atoms firmly, possibly producing a band gap.鈥
Banhart and his colleagues created graphene layers that were then damaged. 鈥淲e used an electron beam to damage the graphene,鈥 Banhart says. 鈥淔or this paper, we used tungsten atoms to bond to the graphene. The defects we created made it possible for the tungsten atoms to be trapped by the defects, creating stable bonds.鈥
Reconstructed defects increase the activity seen in graphene, making bonding to other atoms possible. 鈥淭he graphene surface is normally rather inert,鈥 Banhart explains, 鈥渂ut defects such as pentagonal or heptagonal rings enhance its activity. We saw enhanced chemical activity with the graphene.鈥
Even though Banhart and his colleagues hope that this work will lead to the eventual creation of nanoelectronic devices made with graphene, he points out that they were unable to show definitive evidence of band gap creation. 鈥淭here is no evidence that we did create a band gap,鈥 he admits. 鈥淏ut perhaps tungsten is not ideal. We used it because it is large, and easy to see with the electron microscope when trapped by the graphene.鈥
Banhart says that the tungsten has served its purpose, showing that it is possible to attach metal atoms to graphene with the help of defects on the graphene鈥檚 surface. He also points out that their recent work shows that it is possible to use this technique to modify graphene鈥檚 properties locally. 鈥淲e have shown that our method might be used in the future to control graphene鈥檚 electronic properties better.鈥
The next step is to try to trap other atoms using defects in graphene. Banhart would also like to do more tests on the electronic properties of graphene doped in this manner. 鈥淚t would be good to do more tests of graphene,鈥 he says. 鈥淲ith more experiments, we should be able to begin to model the electronic structure of graphene more accurately. Once we better understand the properties of graphene, we should be able to better manipulate them so that we can get a band gap, and so that we can use them in nanoelectronic devices.鈥
More information: Ovidiu Cretu, et. al., 鈥淢igration and Localization of Metal Atoms on Strained Graphene,鈥 麻豆淫院ical Review Letters (2010). Available online:
Copyright 2010 麻豆淫院Org.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of 麻豆淫院Org.com.