(麻豆淫院Org.com) -- "Carbon nanotubes have a lot of really nice properties that make them good for photonics," Laurent Vivien tells 麻豆淫院Org.com. Ever since the discovery that carbon nanotubes have photoluminescence when encapsulated in micelle surfactant, Vivien points out, there has been interest in pursuing them for use in nanophotonics, and in microelectronics.
As encouraging as photoluminescence in carbon nanotubes has been, though, scientists also need to see that they could be investigated as optical sources. The ability to amplify light is vital for this purpose. Vivien, a CNRS scientist at the Institute of Fundamental Electronics at the University Paris-Sud in Orsay, France, is part of a team that has demonstrated that optical gain is possible with carbon nanotubes. Along with a team from the Institute, as well as the National Institute of Advance Industrial Science and Technology in Tsukuba, Japan, Vivien has published the group鈥檚 findings in Applied 麻豆淫院ics Letters: 鈥淥ptical gain in carbon nanotubes.鈥
鈥淥ur demonstration is the first step to reach a laser source based on carbon nanotubes that can be used in photonics,鈥 Vivien explains. 鈥淭he first step is to demonstrate that gain can be seen in the material, and we have done that, showing that carbon nanotubes can amplify light.鈥
The demonstration of optical gain was relatively straightforward in III-V materials, but it was the first time in carbon nanotubes. The team used a polymer assisted extraction technique: a semiconducting single-walled carbon nanotube doped thin layer was dropped onto glass. The sample was then excited with the help of a laser, and the results observed. The scientists in the group noted that the light was, in fact, amplified.
鈥淣ow that we have seen that carbon nanotubes can produce this effect, the next step is to build a laser based on carbon nanotubes,鈥 Vivien says. He points out that it should be possible to insert a carbon nanotube inside an optical resonator in order to make a laser. 鈥淭his method could lead to a laser with the capability to emit at several wavelengths according to the nanotube geometry, which could be suitable for many photonic applications.鈥
Other possibilities for photonics based on carbon nanotubes include telecommunications and possible microelectronics. 鈥淚t should be possible to make photonic circuits based on carbon nanotubes,鈥 Vivien says, 鈥渁nd the semiconducting nature of these nanotubes could also make them useful in electronics. These carbon nanotubes are versatile, and with them you can make several building blocks for many different applications.鈥
Vivien and his colleagues plan to focus first on building a laser based on carbon nanotubes, rather than exploring the possibilities in microelectronics; other scientists might be able to pick up on that work. 鈥淲hile I see other potential applications following this demonstration, I am most interested in photonics,鈥 he explains. 鈥淭his really is a good first step toward a new photonics based on carbon nanotubes. This could be less expensive, flexible and used in many applications.鈥
鈥淪emiconducting carbon nanotubes offer a very good material,鈥 Vivien continues. 鈥淭here are a number of desirable properties for a wide variety of applications. These nanotubes are low cost, modular and flexible. This is a breakthrough for photonics using carbon nanotubes and could lead to a whole new photonics in the future.鈥
More information: Etienne Gaufr膷s, Nicolas Izard, Xavier Le Roux, Delphine Marris-Morini, Sa膹d Kazaoui, Eric Cassan, and Laurent Vivien, 鈥淥ptical gain in carbon nanotubes,鈥 Applied 麻豆淫院ics Letters (2010). Available online:
Copyright 2010 麻豆淫院Org.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of 麻豆淫院Org.com.